Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(17): 22055-22065, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38636080

RESUMO

Nb2O5 has been viewed as a promising anode material for lithium-ion batteries by virtue of its appropriate redox potential and high theoretical capacity. However, it suffers from poor electric conductivity and low ion diffusivity. Herein, we demonstrate the controllable fabrication of Cu-doped Nb2O5 with orthorhombic (T-Nb2O5) and monoclinic (H-Nb2O5) phases through annealing the solvothermally presynthesized Nb2O5 precursor under different temperatures in air, and the Cu doping amount can be readily controlled by the concentration of the precursor solution, whose effect on the lithium storage behaviors of the Cu-doped Nb2O5 is thoroughly investigated. H-Nb2O5 shows obvious redox peaks (Nb5+/Nb4+ and Nb4+/Nb3+) with much higher capacity and better cycling stability than those for the widely investigated T-Nb2O5. When introducing appropriate Cu doping, the optimized H-Cu0.1-Nb2O5 electrode shows greatly enhanced conductivity and lower diffusion barrier as revealed by the theoretical calculations and electrochemical characterizations, delivering a high reversible capacity of 203.6 mAh g-1 and a high capacity retention of 140.8 mAh g-1 after 5000 cycles at 1 A g-1, with a high initial Coulombic efficiency of 91% and a high rate capacity of 144.2 mAh g-1 at 4 A g-1. As a demonstration for full-cell application, the H-Cu0.1-Nb2O5||LiFePO4 cell displays good cycling performance, exhibiting a reversible capacity of 135 mAh g-1 after 200 cycles at 0.2 A g-1. More importantly, this work offers a new synthesis protocol of the monoclinic Nb2O5 phase with high capacity retention and improved reaction kinetics.

2.
J Microbiol ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446393

RESUMO

We isolated and analyzed a novel, Gram-stain-positive, aerobic, rod-shaped, non-motile actinobacterium, designated as strain ZFBP1038T, from rock sampled on the north slope of Mount Everest. The growth requirements of this strain were 10-37 °C, pH 4-10, and 0-6% (w/v) NaCl. The sole respiratory quinone was MK-9, and the major fatty acids were anteiso-C15:0 and iso-C17:0. Peptidoglycan containing meso-diaminopimelic acid, ribose, and glucose were the major cell wall sugars, while polar lipids included diphosphatidyl glycerol, phosphatidyl glycerol, an unidentified phospholipid, and an unidentified glycolipid. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain ZFBP1038T has the highest similarity with Spelaeicoccus albus DSM 26341 T (96.02%). ZFBP1038T formed a distinct monophyletic clade within the family Brevibacteriaceae and was distantly related to the genus Spelaeicoccus. The G + C content of strain ZFBP1038T was 63.65 mol% and the genome size was 4.05 Mb. Digital DNA-DNA hybridization, average nucleotide identity, and average amino acid identity values between the genomes of strain ZFBP1038T and representative reference strains were 19.3-25.2, 68.0-71.0, and 52.8-60.1%, respectively. Phylogenetic, phenotypic, and chemotaxonomic characteristics as well as comparative genome analyses suggested that strain ZFBP1038T represents a novel species of a new genus, for which the name Saxibacter gen. nov., sp. nov. was assigned with the type strain Saxibacter everestensis ZFBP1038T (= EE 014 T = GDMCC 1.3024 T = JCM 35335 T).

3.
Sci Total Environ ; 918: 170626, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38325482

RESUMO

Nanoplastics are widely used across various fields, yet their uptake can potentially exert adverse effects on plant growth and development, ultimately reducing yields. While there is growing awareness of the phytotoxicity caused by nanoplastics, our understanding of effective strategies to prevent nanoplastic accumulation in plants remains limited. This study explores the role of strigolactones (SLs) in mitigating the toxicity of polystyrene nanoplastics (PS-NPs) in Zea mays L. (maize). SLs application markedly inhibited PS-NPs accumulation in maize roots, thus enhancing the root weight, shoot weight and shoot length of maize. Physiological analysis showed that SLs application activated the activities of antioxidant defence enzymes, superoxide dismutase and catalase, to decrease the malondialdehyde content and electrolyte leakage and alleviate the accumulation of H2O2 and O2.- induced by PS-NPs in maize plants. Transcriptomic analyses revealed that SLs application induced transcriptional reprogramming by regulating the expression of genes related to MAPK, plant hormones and plant-pathogen interaction signal pathways in maize treated with PS-NPs. Notably, the expression of genes, such as ZmAUX/IAA and ZmGID1, associated with phytohormones in maize treated with PS-NPs underwent significant changes. In addition, SLs induced metabolic dynamics changes related to amino acid biosynthesis, ABC transporters, cysteine and methionine metabolism in maize treated with PS-NPs. In summary, these results strongly reveal that SLs could serve as a strategy to mitigate the accumulation and alleviate the stress of PS-NPs in maize, which appears to be a potential approach for mitigating the phytotoxicity induced by PS-NPs in maize.


Assuntos
Compostos Heterocíclicos com 3 Anéis , Lactonas , Microplásticos , Zea mays , Zea mays/metabolismo , Microplásticos/metabolismo , Raízes de Plantas/metabolismo , Poliestirenos/toxicidade , Poliestirenos/metabolismo , Peróxido de Hidrogênio/farmacologia
4.
Molecules ; 28(21)2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37959852

RESUMO

Nocardioides, a genus belonging to Actinomycetes, can endure various low-nutrient conditions. It can degrade pollutants using multiple organic materials such as carbon and nitrogen sources. The characteristics and applications of Nocardioides are described in detail in this review, with emphasis on the degradation of several hard-to-degrade pollutants by using Nocardioides, including aromatic compounds, hydrocarbons, haloalkanes, nitrogen heterocycles, and polymeric polyesters. Nocardioides has unique advantages when it comes to hard-to-degrade pollutants. Compared to other strains, Nocardioides has a significantly higher degradation rate and requires less time to break down substances. This review can be a theoretical basis for developing Nocardioides as a microbial agent with significant commercial and application potential.


Assuntos
Actinobacteria , Poluentes Ambientais , Poluentes do Solo , Nocardioides , Biodegradação Ambiental , Nitrogênio
5.
Antonie Van Leeuwenhoek ; 116(12): 1407-1419, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37847451

RESUMO

A novel Streptomyces strain, designated 3_2T, was isolated from soil under the black Gobi rock sample of Northwest China. The taxonomic position of this strain was revealed by a polyphasic approach. Comparative analysis of the 16S rRNA gene sequences indicated that 3_2T was closely related to the members of the genus Streptomyces, with the highest similarity to Streptomyces rimosus subsp. rimosus CGMCC 4.1438 (99.17%), Streptomyces sioyaensis DSM 40032 (98.97%). Strain 3_2T can grow in media up to 13% NaCl. The genomic DNA G + C content of strain 3_2T was 69.9%. We obtained the genomes of 22 Streptomyces strains similar to strain 3_2T, compared the average nucleotide similarity, dDDH and average amino acid identity, and found that the genomic similarity of the new isolate 3_2T to all strains was below the threshold for interspecies classification. Chemotaxonomic data revealed that strain 3_2T possessed MK-9 (H6) and MK-9 (H8) as the major menaquinones. The cell wall contained LL-diaminopimelic acid (LL-DAP) and the whole-cell sugars were ribose and glucose. The major fatty acid methyl esters were iso-C16:0 (23.6%) and anteiso-C15:0 (10.4%). The fermentation products of strain 3_2T were inhibitory to Staphylococcus aureus and Bacillus thuringiensi. The genome of 3_2T was further predicted using anti-smash and the strain was found to encode the production of 41 secondary metabolites, and these gene clusters may be key to the good inhibitory activity exhibited by the strain. Genomic analysis revealed that strain 3_2T can encode genes that produce a variety of genes in response to environmental stresses, including cold shock, detoxification, heat shock, osmotic stress, oxidative stress, and these genes may play a key role in the harsh environment in which the strain can survive. Therefore, this strain represents a novel Streptomyces species, for which the name Streptomyces halobius sp. nov. is proposed. The type strain is 3_2T (= JCM 34935T = GDMCC 4.217T).


Assuntos
Anti-Infecciosos , Streptomyces , RNA Ribossômico 16S/genética , Solo , Ácidos Graxos/análise , Genômica , Análise de Sequência de DNA , Filogenia , DNA Bacteriano/genética , Fosfolipídeos/análise , Técnicas de Tipagem Bacteriana
6.
Plant Physiol Biochem ; 199: 107719, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37148659

RESUMO

Heat stress severely inhibits plant growth and limits crop yields. Thus, it is crucial to identify genes that are associated with plant heat stress responses. Here, we report a maize (Zea mays L.) gene, N-acetylglutamate kinase (ZmNAGK), that positively enhances plant heat stress tolerance. The ZmNAGK expression level was significantly up-regulated by heat stress in maize plants, and ZmNAGK was found to be localized in maize chloroplasts. Phenotypic analysis showed that overexpressing of ZmNAGK enhanced the tolerance of tobacco to heat stress both in the seed germination and seedling growth stages. Further physiological analysis showed that ZmNAGK overexpression in tobacco could alleviate oxidative damages that occurred during heat stress via activation of antioxidant defense signaling. Transcriptome analysis revealed that ZmNAGK could modulate the expression of antioxidant-enzyme encoding genes, such as ascorbate peroxidase 2 (APX2) and superoxide dismutase C (SODC), and heat shock network genes. Taken together, we have identified a maize gene that can provide plants with heat tolerance through the induction of antioxidant-associated defense signaling.


Assuntos
Antioxidantes , Termotolerância , Antioxidantes/metabolismo , Nicotiana/metabolismo , Termotolerância/genética , Plantas Geneticamente Modificadas/genética , Resposta ao Choque Térmico , Zea mays/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Environ Sci Pollut Res Int ; 30(18): 52749-52761, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36843164

RESUMO

Heavy metal contamination in soils seriously threatens human health and aggravates the global pollution burden. In this study, we investigated the risk of heavy metal contamination in soils at a Zn-Pb mineral processing plant in Longnan, China, and the effects of different heavy metal contamination levels on diverse microbial communities. Statistical analysis showed that, except for Ni, the average content of all detected metals (Zn, Pb, As, Cu, Cd, Hg) in the soil was higher than the background value of soil in the study area, which was most seriously contaminated with Pb and As. Comparison of functional divisions showed that heavy metal soil contamination was most serious in the raw material stacking area and the production area. Interpolation analysis showed that areas closer to the wastewater discharge area had higher contents of each heavy metal and were more seriously polluted. From the point of pollution index, the risk of heavy metal soil pollution in the study area was very high (RI = 2845.24, i.e., > 600), with Cd and Hg being the most serious pollutants compared with other heavy metals. Microbial community abundance, diversity, and structure differed at different levels of heavy metal contamination. The community diversity of bacteria decreased with increasing heavy metal concentrations, while no significant change in fungi was observed. Evidence from variation redundancy analysis (RDA) and the Spearman correlation analysis showed that the leading factors affecting microbial community composition were Cu, Cd, Hg, and pH. Actinobacteria and Gemmatimonadetes at the uncontaminated level (CL) were significantly and negatively correlated with the concentrations of Cu, Zn, Cd, and Pb. Proteobacteria and Chloroflexi at the severely contaminated level (SL) were significantly correlated with pH and Hg. However, heavy metal contamination had less effect on most of the dominant fungi. In conclusion, microbial communities such as Proteobacteria, Actinobacteria, Chloroflexi, and Ascomycota showed greater tolerance to heavy metals. These results could be used as important references for the remediation of heavy metal-contaminated soils.


Assuntos
Chloroflexi , Mercúrio , Metais Pesados , Microbiota , Poluentes do Solo , Humanos , Solo/química , Chumbo/análise , Cádmio/análise , Poluentes do Solo/análise , Monitoramento Ambiental , Metais Pesados/análise , Poluição Ambiental/análise , Mineração , Mercúrio/análise , Medição de Risco , Bactérias , China , Fungos , Zinco/análise
8.
Microb Ecol ; 85(4): 1382-1395, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35583685

RESUMO

Understanding how microbial communities adapt to environmental stresses is critical for interpreting ecological patterns and microbial diversity. In the case of the Gobi Desert, little is known on the environmental factors that explain hypolithic colonization under quartz stones. By analyzing nine hypolithic communities across an arid gradient and the effects of the season of the year in the Hexi Corridor of this desert, we found a significant decrease in hypolithic colonization rates (from 47.24 to 15.73%) with the increasing drought gradient and found two distinct communities in Hot and Cold samples, which survived or proliferated after a hot or a cold period. While Cold communities showed a greater species diversity and a predominance of Cyanobacteria, Hot communities showed a predominance of members of the Proteobacteria and the Firmicutes. In comparison, Cold communities also possessed stronger functions in the photosynthesis and carbon metabolism. Based on the findings of this study, we proposed that the hypolithic communities of the Hexi Corridor of the Gobi Desert might follow a seasonal developmental cycle in which temperature play an important role. Thus after a critical thermal threshold is crossed, heterotrophic microorganisms predominate in the hot period, while Cyanobacteria predominate in the cold period.


Assuntos
Cianobactérias , Microbiota , Estações do Ano , Clima Desértico , Cianobactérias/genética , Temperatura , Microbiologia do Solo
9.
Biology (Basel) ; 11(11)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36358257

RESUMO

Laohugou Glacier No. 12 is located on the northern slope of the western Qilian Mountains with a temperate continental wet climate and an extremely cold winter. Bacteria in a newly exposed moraine have to cope with various pressures owing to deglaciation at the glacier snout. However, limited information is available regarding the high diversity and temporary survival of culturable heterotrophic bacteria under various environmental stresses. To examine the tolerance of extremophiles against varying environmental conditions in a newly exposed moraine, we simulated environmental stress in bacterial cultures. The results showed that the isolated strains belonged to actinobacteria, Proteobacteria, Bacteroidetes, Deinococcus-Thermus, and Firmicutes. Actinobacteria was the most abundant phylum, followed by Proteobacteria, at both high and low temperatures. Pseudarthrobacter was the most abundant genus, accounting for 14.2% of the total isolates. Although several microorganisms grew at 10 °C, the proportion of microorganisms that grew at 25 °C was substantially higher. In particular, 50% of all bacterial isolates grew only at a high temperature (HT), whereas 21.4% of the isolates grew at a low temperature (LT), and 38.6% of the isolates grew at both HT and LT. In addition, many radiation-resistant extremophiles were identified, which adapted to both cold and oxidative conditions. The nearest neighbors of approximately >90% of bacteria belonged to a nonglacial environment, such as oil-contaminated soil, rocks, and black sand, instead of glacial niches. This study provides insights into the ecological traits, stress responses, and temporary survival of culturable heterotrophic bacteria in a newly exposed moraine with variable environmental conditions and the relationship of these communities with the non-glacial environment. This study may help to understand the evolution, competition, and selective growth of bacteria in the transition regions between glaciers and retreats in the context of glacier melting and retreat owing to global warming.

10.
Microorganisms ; 10(10)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36296313

RESUMO

Mount Everest provides natural advantages to finding radiation-resistant extremophiles that are functionally mechanistic and possess commercial significance. (1) Background: Two bacterial strains, designated S5-59T and S8-45T, were isolated from moraine samples collected from the north slope of Mount Everest at altitudes of 5700m and 5100m above sea level. (2) Methods: The present study investigated the polyphasic features and genomic characteristics of S5-59T and S8-45T. (3) Results: The major fatty acids and the predominant respiratory menaquinone of S5-59T and S8-45T were summed as feature 3 (comprising C16:1 ω6c and/or C16:1 ω7c) and ubiquinone-10 (Q-10). Phylogenetic analyses based on 16S rRNA sequences and average nucleotide identity values among these two strains and their reference type strains were below the species demarcation thresholds of 98.65% and 95%. Strains S5-59T and S8-45T harbored great radiation resistance. The genomic analyses showed that DNA damage repair genes, such as mutL, mutS, radA, radC, recF, recN, etc., were present in the S5-59T and S8-45T strains. Additionally, strain S5-59T possessed more genes related to DNA protection proteins. The pan-genome analysis and horizontal gene transfers revealed that strains of Sphingomonas had a consistently homologous genetic evolutionary radiation resistance. Moreover, enzymatic antioxidative proteins also served critical roles in converting ROS into harmless molecules that resulted in resistance to radiation. Further, pigments and carotenoids such as zeaxanthin and alkylresorcinols of the non-enzymatic antioxidative system were also predicted to protect them from radiation. (4) Conclusions: Type strains S5-59T (=JCM 35564T =GDMCC 1.3193T) and S8-45T (=JCM 34749T =GDMCC 1.2715T) represent two novel species of the genus Sphingomonas with the proposed name Sphingomonas qomolangmaensis sp. nov. and Sphingomonas glaciei sp. nov. The type strains, S5-59T and S8-45T, were assessed in a deeply genomic study of their radiation-resistant mechanisms and this thus resulted in a further understanding of their greater potential application for the development of anti-radiation protective drugs.

11.
J Plant Physiol ; 275: 153763, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35839657

RESUMO

Apetala2/ethylene response factor (AP2/ERF) family of transcription factors plays important roles in plant development and stress responses. However, few members of this family have been functionally and mechanistically characterised in maize. In this study, we characterised a member of the AP2/ERF transcription factor family, ZmEREBP60 from maize. Amino acid sequence alignment and phylogenetic analysis showed that ZmEREBP60 belongs to cluster I of the AP2/ERF family. qRT-PCR analysis indicated that ZmEREBP60 expression was highly induced by drought in the roots, coleoptiles, and leaves. Subcellular localisation analysis revealed that ZmEREBP60 was localised in the nucleus. Moreover, overexpression of ZmEREBP60 enhanced tolerance to drought stress while alleviating the drought-induced increase in H2O2 accumulation and malondialdehyde content in transgenic lines. Transcriptome analysis showed that ZmEREBP60 regulates the expression of genes involved in H2O2 catabolism, water deprivation response, and abscisic acid signalling pathway. Collectively, as a new member of the AP2/ERF transcription factor family in maize, ZmEREBP60 is a positive regulator of plant drought response.


Assuntos
Secas , Zea mays , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/metabolismo , Zea mays/genética , Zea mays/metabolismo
12.
Nucleic Acids Res ; 50(12): 7084-7096, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35699212

RESUMO

We report the discovery and functional characterization of a new bacterial tRNA species. The tRNA-Asp-AUC, from a fast-growing desert streptomycete, decodes GAU codons. In the absence of queuosine tRNA anticodon modification in streptomycetes, the new tRNA circumvents inefficient wobble base-pairing during translation. The tRNA, which is constitutively expressed, greatly enhances synthesis of 4 different antibiotics in the model mesophilic species Streptomyces coelicolor, including the product of a so-called cryptic pathway, and increases yields of medically-important antibiotics in other species. This can be rationalised due to increased expression of both pleiotropic and pathway-specific transcriptional activators of antibiotic biosynthesis whose genes generally possess one or more GAT codons; the frequency of this codon in these gene sets is significantly higher than the average for streptomycete genes. In addition, the tRNA enhances production of cobalamin, a precursor of S-adenosyl methionine, itself an essential cofactor for synthesis of many antibiotics. The results establish a new paradigm of inefficient wobble base-pairing involving GAU codons as an evolved strategy to regulate gene expression and, in particular, antibiotic biosynthesis. Circumventing this by expression of the new cognate tRNA offers a generic strategy to increase antibiotic yields and to expand the repertoire of much-needed new bioactive metabolites produced by these valuable bacteria.


Assuntos
Streptomyces , Streptomyces/genética , Antibacterianos , RNA de Transferência/genética
13.
Biology (Basel) ; 11(4)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35453702

RESUMO

The Taklimakan Desert located in China is the second-largest shifting sand desert in the world and is known for its harsh conditions. Types of γ-rays or UV radiation-resistant bacterial strains have been isolated from this desert. However, there is no information regarding the proportions of the radiation-resistant strains in the total culturable microbes. We isolated 352 bacterial strains from nine sites across the Taklimakan Desert from north to south. They belong to Actinobacteria, Firmicutes, Proteobacteria, and Bacteroidetes. The phylum Actinobacteria was the most predominant in abundance and Firmicutes had the highest species richness. Bacteroidetes had the lowest abundance and was found in four sites only, while the other three phyla were found in every site but with different distribution profiles. After irradiating with 1000 J/m2 and 6000 J/m2 UV-C, the strains with survival rates higher than 10% occupied 72.3% and 36.9% of all culturable bacteria, respectively. The members from Proteobacteria had the highest proportions, with survival rates higher than 10%. After radiation with 10 kGy γ-rays, Kocuria sp. TKL1057 and Planococcus sp. TKL1152 showed higher radiation-resistant capabilities than Deinococcus radiodurans R1. Besides obtaining several radiation-resistant extremophiles, this study measured the proportions of the radiation-resistant strains in the total culturable microbes for the first time. This study may help to better understand the origin of radioresistance, especially by quantitatively comparing proportions of radiation-resistant extremophiles from different environments in the future.

14.
Gene ; 823: 146368, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35240255

RESUMO

The Tibetan Plateau niche provides unprecedented opportunities to find microbes that are functional and commercial significance. The present study investigated the physiological and genomic characteristics of Planococcus halotolerans Y50 that was isolated from a petroleum-contaminated soil sample from the Qinghai-Tibet Plateau, and it displayed psychrotolerant, antiradiation, and oil-degraded characteristics. Whole genome sequencing indicated that strain Y50 has a 3.52 Mb genome and 44.7% G + C content, and it possesses 3377 CDSs. The presence of a wide range of UV damage repair genes uvrX and uvsE, DNA repair genes radA and recN, superoxide dismutase, peroxiredoxin and dioxygenase genes provided the genomic basis for the adaptation of the plateau environment polluted by petroleum. Related experiments also verified that the Y50 strain could degrade n-alkanes from C11-C23, and approximately 30% of the total petroleum at 25 °C within 7 days. Meanwhile, strain Y50 could withstand 5 × 103 J/m2 UVC and 10 KGy gamma ray radiation, and it had strong antioxidant and high radical scavengers for superoxide anion, hydroxyl radical and DPPH. In addition, pan-genome analysis and horizontal gene transfers revealed that strains with different niches have obtained various genes through horizontal gene transfer in the process of evolution, and the more similar their geographical locations, the more similar their members are genetically and ecologically. In conclusion, P. halotolerans Y50 possesses high potential of applications in the bioremediation of alpine hydrocarbons contaminated environment.


Assuntos
Genoma Bacteriano , Petróleo/microbiologia , Planococáceas/fisiologia , Composição de Bases , Biodegradação Ambiental , Tamanho do Genoma , Petróleo/análise , Filogenia , Planococáceas/classificação , Planococáceas/genética , Planococáceas/isolamento & purificação , Microbiologia do Solo , Tibet , Sequenciamento Completo do Genoma
15.
Microorganisms ; 9(2)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33514038

RESUMO

Bacterial communities in cold-desert habitats play an important ecological role. However, the variation in bacterial diversity and community composition of the cold-desert ecosystem in Qinghai-Tibet Plateau remains unknown. To fill this scientific gape, Illumina MiSeq sequencing was performed on 15 soil samples collected from different cold-desert habitats, including human-disturbed, vegetation coverage, desert land, and sand dune. The abundance-based coverage estimator, Shannon, and Chao indices showed that the bacterial diversity and abundance of the cold-desert were high. A significant variation reported in the bacterial diversity and community composition across the study area. Proteobacteria accounted for the largest proportion (12.4-55.7%) of all sequences, followed by Actinobacteria (9.2-39.7%), Bacteroidetes (1.8-21.5%), and Chloroflexi (2.7-12.6%). Furthermore, unclassified genera dominated in human-disturbed habitats. The community profiles of GeErMu, HongLiangHe, and CuoNaHu sites were different and metagenomic biomarkers were higher (22) in CuoNaHu sites. Among the soil physicochemical variables, the total nitrogen and electric conductivity significantly influenced the bacterial community structure. In conclusion, this study provides information regarding variation in diversity and composition of bacterial communities and elucidates the association between bacterial community structures and soil physicochemical variables in cold-desert habitats of Qinghai-Tibet Plateau.

16.
Artigo em Inglês | MEDLINE | ID: mdl-33270002

RESUMO

A bacterial strain, designated Y40T, was isolated from sandy soil sampled on the Qinghai-Tibet Plateau. A polyphasic study confirmed the affiliation of the strain with the genus Mesobacillus. Strain Y40T was found to be an aerobic, Gram-stain-positive, motile and rod-shaped bacterium. The strain grew at 10-42 °C, pH 6-9 and with 0-2 % (w/v) NaCl. The diagnostic amino acid was meso-diaminopimeilic acid. MK7 was predominant menaquinone, and iso-C15:0, iso-C17:1 ω10c and anteiso-C15:0 were the major fatty acids. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified lipid. The DNA G+C content was 40.6 mol%. Based on he results of 16S rRNA gene sequence analysis, strain Y40T was phylogenetically closely related to Mesobacillus zeae JJ-247T and Mesobacillus foraminis CV53T, with similarities of 98.0 and 97.7 %, respectively. The average nucleotide identity (ANIb) values between strain Y40T and Mesobacillus zeae JJ-247T and Mesobacillus foraminis CV53T were 69.9 and 70.0 %, respectively. Based on the morphological, physiological, and chemotaxonomic data, it is proposed that strain Y40T (=CICC 24459T=JCM 32794T) should be classified into the genus Mesobacillus as Mesobacillus harenae sp. nov.


Assuntos
Bacillaceae/classificação , Clima Desértico , Filogenia , Areia/microbiologia , Microbiologia do Solo , Bacillaceae/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Temperatura Baixa , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Tibet , Vitamina K 2/análogos & derivados , Vitamina K 2/química
18.
Front Microbiol ; 11: 554105, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042062

RESUMO

The Qaidam Basin of the Qinghai-Tibet Plateau is a cold, hyper-arid desert that presents extreme challenges to microbial communities. As little is known about variations between surface and subsurface microbial communities, high-throughput DNA sequencing was used in this study to profile bacterial communities of the soil samples collected at different depths in three regions in the Qaidam Basin. The α-diversity indices (Chao, Shannon, and Simpson) indicated that bacterial abundance and diversity were higher in the east and the high-elevation regions compared to the west region. In general, Firmicutes was dominant in the west region, while Proteobacteria and Acidobacteria were dominant in the east and the high-elevation regions. The structure of the bacterial communities differed greatly across regions, being strongly correlated with total organic carbon (TOC) and total nitrogen (TN) content. The differences in bacterial communities between the surface and the subsurface soil samples were smaller than the differences across the regions. Network analyses of environmental factors and bacterial genera indicated significant positive correlations in all regions. Overall, our study provides evidence that TOC and TN are the best predictors of both surface and subsurface bacterial communities across the Qaidam Basin. This study concludes that the bacterial community structure is influenced by both the spatial distance and the local environment, but environmental factors are the primary drivers of bacterial spatial patterns in the Qaidam Basin.

19.
Int J Syst Evol Microbiol ; 70(12): 6338-6347, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33118923

RESUMO

A Gram-stain-positive, aerobic, rod-shaped, non-motile, endospore-forming and UV-resistant bacterial strain, designated strain TKL69T, was isolated from sandy soil sampled in the Taklimakan Desert. The strain grew at 20-50 °C, pH 6-9 and with 0-12 % (w/v) NaCl. The major fatty acids were anteiso-C15 : 0, iso-C15 : 0 and C16 : 0. The only respiratory quinone was MK-7. The cell-wall peptidoglycan was meso-diaminopimelic acid. Diphosphatidyl glycerol, two unidentified aminophospholipids and one unidentified phospholipid were identified as the major polar lipids. Genomic DNA analysis revealed a G+C content of 38.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain TKL69T has the highest similarity to Salinibacillus xinjiangensis CGMCC 1.12331T (96.9 %) but belongs to an independent taxon separated from other genera of the family Bacillaceae. Phylogenetic, phenotypic and chemotaxonomic analyses suggested that strain TKL69T represents a novel species of a new genus, for which the name Radiobacillus gen. nov., sp. nov. is proposed, with the type strain being Radiobacillus deserti TKL69T (=JCM 33497T=CICC 24779T).


Assuntos
Bacillaceae/classificação , Clima Desértico , Filogenia , Microbiologia do Solo , Bacillaceae/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Parede Celular/química , China , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Peptidoglicano/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
20.
Int J Syst Evol Microbiol ; 70(4): 2435-2439, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32559833

RESUMO

A bacterial strain, designated GEM5T, was isolated from sand soil samples from the Qinghai-Tibet Plateau. The polyphasic study confirmed the affiliation of the isolate with the genus Massilia. GEM5T had Gram-stain-negative, non-spore-forming and rod-shaped cells and grew at 4-30 °C, pH 6-8 and with 0-2 % (w/v) NaCl. Its cell wall contained ribose. Q8 was the predominant respiratory quinone, and summed feature 3 (C16 : 1ω6c/ω7c) and C16 : 0 were the major components of the fatty acids. The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, an unidentified phospholipid, an unidentified aminolipid and four unidentified lipids. The DNA G+C content was 65.1 mol%. The phylogenetic analysis based on the 16S rRNA gene showed a stable clade being formed by GEM5T, Massilia timonae CCUG 45783T (97.94 %) and Massilia oculi CCUG 43427AT (97.58 %). The average nucleotide identity (ANIb) values between GEM5T and M. timonae CCUG 45783T, M.oculi CCUG 43427AT were 91.3 and 91.7 %, respectively. On the basis of the morphological, physiological and chemotaxonomic pattern, it was proposed that strain GEM5T (=JCM 32744T=CICC 24458T) should be classified as representing a member of the genus Massilia with the name Massilia arenae sp. nov.


Assuntos
Oxalobacteraceae/classificação , Filogenia , Areia/microbiologia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Oxalobacteraceae/isolamento & purificação , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Tibet , Ubiquinona/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA